If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.50t^2-30.0t-30.0=0
We add all the numbers together, and all the variables
1.50t^2-30t-30=0
a = 1.50; b = -30; c = -30;
Δ = b2-4ac
Δ = -302-4·1.50·(-30)
Δ = 1080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1080}=\sqrt{36*30}=\sqrt{36}*\sqrt{30}=6\sqrt{30}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6\sqrt{30}}{2*1.50}=\frac{30-6\sqrt{30}}{3} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6\sqrt{30}}{2*1.50}=\frac{30+6\sqrt{30}}{3} $
| 20+4x=28 | | -10(x-1)=10-10 | | 6x-(2x+4)=44 | | 32=12x-4 | | 4x(x-3)=8(x-1) | | 70=(2x-10)x | | 31x+7=131 | | 6x(x-1)=3x-2 | | v-15=27* | | 3v/7=12 | | 6x+9=( | | 100-4q=2q+4 | | 2x/8=1/20 | | 8/2x=20 | | 3t-13=-31+t | | 5(x+3)=9(x+1)-6 | | 3b=b+16 | | 8y-7=7+y | | -20y-50+20y=50 | | .3x-33=180 | | 7s-29=-5+s | | 9m2-30m+25=0 | | (4x+1)/5=2x+1 | | 4x+1/5=2x+1 | | 6+3.50x=20 | | 3x+9x=50 | | 3m+9=m-11 | | 3x9x=60 | | 61/8-x=17/8 | | (2x=1)-(2x=1) | | 4x+2(x+1)=6x+2 | | 34+6=x |